Disk View Factor from a Plate Element

Last updated:
Share: X LinkedIn

Introduction

In this article, we will derive analytical view factor expressions for a disk from a plate element. We describe the disk geometry and relative position with respect to the plate element by parameters (R,h,ω)(R, h, \omega) as shown in Figure 1. The actual view factor values can be calculated by our online tool: View Factor Calculator.

disk-viewfactor-1 Figure 1: Geometrical Configuration of a Disk and a Plate Element for View Factor Evaluation.

View Factor Evaluation based on the Area Integration

A disk view factor from a plate element can be derived, by executing the area integration based on the view factor definition.

F=AcosΩcosΛπS2dA=0R02πcosΩcosΛπ(r2+h2) rdβdr=0R02πr2hsinωcosβ+rh2cosωπ(r2+h2)2dβdr=0R2rh2cosω(r2+h2)2dr=[h2cosωr2+h2]0R=R2R2+h2cosω=11+(hR)2cosω\begin{align} F &= \int_A \frac{\cos \Omega \cos \Lambda}{\pi S^2} dA = \int_0^R \int_0^{2\pi} \frac{\cos \Omega \cos \Lambda}{\pi (r^2+h^2)}\ r d \beta dr \notag \\ &= \int_0^R \int_0^{2\pi} \frac{r^2h \sin \omega \cos \beta + rh^2 \cos \omega}{\pi (r^2+h^2)^2} d\beta dr = \int_0^R \frac{2 rh^2 \cos \omega}{(r^2+h^2)^2} dr \notag \\ &= \left[- \frac{h^2 \cos \omega}{r^2 + h^2} \right]^R_0 = \frac{R^2}{R^2 + h^2} \cos \omega = \frac{1}{1 + (\frac{h}{R})^2} \cos \omega \end{align}

The parameter transformations for cosΩ\cos\Omega and cosΛ\cos\Lambda are performed as shown in Eqs. (2) and (3).

cosΩ=ωrωr=rsinωcosβ+hcosωr2+h2whereω=(sinω0cosω),r=(rcosαrsinαh)\begin{align} &\cos \Omega = \frac{\boldsymbol{\omega} \cdot \boldsymbol{r}}{\|\boldsymbol{\omega}\| \|\boldsymbol{r}\|} = \frac{r \sin \omega \cos \beta + h \cos \omega}{\sqrt{r^2 + h^2}} \\ &\mathrm{where}\quad\boldsymbol{\omega} = \left( \begin{array}{c} \sin\omega \\ 0 \\ \cos \omega \end{array} \right), \hspace{10pt} \boldsymbol{r} = \left( \begin{array}{c} r \cos \alpha \\ r \sin \alpha \\ h \end{array} \right) \notag \end{align} htanΛ=r,cosΛ=hr2+h2\begin{equation} h \tan \Lambda = r, \quad \cos \Lambda = \frac{h}{\sqrt{r^2 + h^2}} \end{equation}

The calculation up to this point is the case where the entire disk is visible from the plate element. If the orientation of the plate element becomes more inclined (i.e. ω>arctanhR\omega > \arctan \frac{h}{R}), a part of the disk goes out of the view from the plate element. In this case, the area integration must be performed only for the visible part of the disk, which significantly complicates the calculation.

disk-viewfactor-2 Figure 2: Disk View Factor Calculation by Area Integration.

To execute the area integration correctly, we divide the disk into two parts: 1\textcircled{1} sector of the disk (0ββ00 \le \beta \le \beta_0), and 2\textcircled{2} triangular area.

F=AcosΩcosΛπS2dA=0R0β02cosΩcosΛπ(r2+h2)rdβdr+Rcosβ000xtanβ02cosΩcosΛπ(x2+y2+h2)dydx=0R0β02r2hsinωcosβ+2rh2cosωπ(r2+h2)2dβdr+Rcosβ000xtanβ02xhsinω+2h2cosωπ(x2+y2+h2)2dydx=0R2r2hsinωsinβ0π(r2+h2)2dr+0R2β0rh2cosωπ(r2+h2)2dr+0Rsinβ0Rcosβ0ytanβ02xhsinωπ(x2+y2+h2)2dxdy+Rcosβ000xtanβ02h2cosωπ(x2+y2+h2)2dydx\begin{align} &F = \int_A \frac{\cos \Omega \cos \Lambda}{\pi S^2} dA \notag \\ &= \int_0^R \int_{0}^{\beta_0} \frac{2 \cos \Omega \cos \Lambda}{\pi (r^2+h^2)} r d \beta dr + \int^0_{R \cos \beta_0} \int_0^{x \tan \beta_0} \frac{2 \cos \Omega \cos \Lambda}{\pi (x^2 + y^2 + h^2)} dy dx \notag \\ &= \int^R_0 \int_{0}^{\beta_0} \frac{2r^2h \sin \omega \cos \beta + 2rh^2 \cos \omega}{\pi (r^2 + h^2)^2} d\beta dr + \int^0_{R \cos \beta_0} \int_0^{x \tan \beta_0} \frac{2xh \sin \omega + 2h^2 \cos \omega}{\pi (x^2 + y^2 + h^2)^2} dy dx \notag \\ &= \int^R_0 \frac{2r^2h \sin \omega \sin \beta_0}{\pi (r^2 + h^2)^2}dr + \int^R_0 \frac{2\beta_0 rh^2 \cos \omega}{\pi (r^2 + h^2)^2}dr + \int_0^{R \sin \beta_0} \int^{\frac{y}{\tan \beta_0}}_{R \cos \beta_0} \frac{2xh \sin \omega}{\pi (x^2 + y^2 + h^2)^2} dx dy \notag \\ &\hspace{11pt}+ \int^0_{R \cos \beta_0} \int_0^{x \tan \beta_0} \frac{2h^2 \cos \omega}{\pi (x^2 + y^2 + h^2)^2} dy dx \end{align}

For the parameter transformations of cosΩ\cos \Omega and cosΛ\cos \Lambda in the triangular area, we applied Eqs. (4) and (5).

cosΩ=ωrωr=xsinω+hcosωx2+y2+h2whereω=(sinω0cosω),r=(xyh)\begin{align} &\cos \Omega = \frac{\boldsymbol{\omega} \cdot \boldsymbol{r}}{\|\boldsymbol{\omega}\| \|\boldsymbol{r}\|} = \frac{x \sin \omega + h \cos \omega}{\sqrt{x^2 + y^2 + h^2}} \\ &\mathrm{where}\quad \boldsymbol{\omega} = \left( \begin{array}{c} \sin\omega \\ 0 \\ \cos \omega \end{array} \right), \hspace{5pt} \boldsymbol{r} = \left( \begin{array}{c} x \\ y \\ h \end{array} \right) \notag \end{align} htanΛ=x2+y2,cosΛ=hx2+y2+h2\begin{gather} h \tan \Lambda = \sqrt{x^2 + y^2}, \quad \cos \Lambda = \frac{h}{\sqrt{x^2 + y^2 + h^2}} \end{gather}

Now, we evaluate each integral term in Eq. (4).

First term:

0R2r2hsinωsinβ0π(r2+h2)2dr=2sinωsinβ0π0Rhu2(u2+1)2du,where u=rh=2sinωsinβ0π0arctanRhtan2t(tan2t+1)2dtcos2t,where tant=u=2sinωsinβ0π0arctanRhsin2tdt=sinωsinβ0π0arctanRh1cos2tdt=sinωsinβ0π[t12sin2t]0arctanRh=sinωsinβ0π[ttant1+tan2t]0arctanRh=sinωsinβ0π(arctanRhRhR2+h2)\begin{align} &\int^R_0 \frac{2r^2h \sin \omega \sin \beta_0}{\pi (r^2 + h^2)^2}dr = \frac{2 \sin \omega \sin \beta_0}{\pi} \int_0^{\frac{R}{h}} \frac{u^2}{(u^2 + 1)^2} du, \hspace{10pt} \mathrm{where}\ u=\frac{r}{h} \notag \\ &= \frac{2 \sin \omega \sin \beta_0}{\pi} \int_0^{\arctan \frac{R}{h}} \frac{\tan^2 t}{(\tan^2 t + 1)^2} \frac{dt}{\cos^2 t}, \hspace{10pt} \mathrm{where}\ \tan t=u \notag \\ &= \frac{2 \sin \omega \sin \beta_0}{\pi} \int_0^{\arctan \frac{R}{h}} \sin^2 t dt = \frac{\sin \omega \sin \beta_0}{\pi} \int_0^{\arctan \frac{R}{h}} 1 - \cos 2t dt \notag \\ &= \frac{\sin \omega \sin \beta_0}{\pi} \left[t - \frac{1}{2} \sin 2t \right]^{\arctan \frac{R}{h}}_0 = \frac{\sin \omega \sin \beta_0}{\pi} \left[t - \frac{\tan t}{1+ \tan^2 t} \right]^{\arctan \frac{R}{h}}_0 \notag \\ &= \frac{\sin \omega \sin \beta_0}{\pi} \left( \arctan \frac{R}{h} - \frac{Rh}{R^2 + h^2} \right) \end{align}

Second term:

0R2β0rh2cosωπ(r2+h2)2dr=[β0h2cosωπ(r2+h2)]0R=β0cosωπR2R2+h2=β0cosωπ11+(h/R)2\begin{align} &\int^R_0 \frac{2\beta_0 rh^2 \cos \omega}{\pi (r^2 + h^2)^2}dr = \left[ - \frac{\beta_0 h^2 \cos \omega}{\pi (r^2 + h^2)} \right]^R_0 = \frac{\beta_0 \cos \omega}{\pi} \frac{R^2}{R^2 + h^2} \notag \\ &= \frac{\beta_0 \cos \omega}{\pi} \frac{1}{1 + (h/R)^2} \end{align}

Third term:

0Rsinβ0Rcosβ0ytanβ02xhsinωπ(x2+y2+h2)2dxdy=0Rsinβ0[hsinωπ(x2+y2+h2)]Rcosβ0ytanβ0dy=hsinωπ0Rsinβ0(1y2+h2+R2cos2β01y2sin2β0+h2)dy=hsinωπ0Rsinβ01y2h2+R2cos2β0+1dyh2+R2cos2β0hsinωπ0Rsinβ01y2h2sin2β0+1dyh2=hsinωπ0arctanRsinβ0h2+R2cos2β0duh2+R2cos2β0hsinωπ0arctanRhsinβ0hdv=hsinωπh2+R2cos2β0arctanRsinβ0h2+R2cos2β0sinωsinβ0πarctanRh\begin{align} &\int_0^{R \sin \beta_0} \int^{\frac{y}{\tan \beta_0}}_{R \cos \beta_0} \frac{2xh \sin \omega}{\pi (x^2 + y^2 + h^2)^2} dx dy = \int_0^{R \sin \beta_0} \left[ - \frac{h \sin \omega}{\pi (x^2 + y^2 + h^2)} \right]^{\frac{y}{\tan \beta_0}}_{R \cos \beta_0} dy \notag \\ &= \frac{h \sin \omega}{\pi}\int_0^{R \sin \beta_0} \left( \frac{1}{y^2 + h^2 + R^2 \cos^2 \beta_0} - \frac{1}{\frac{y^2}{\sin^2 \beta_0} + h^2} \right) dy \notag \\ &= \frac{h \sin \omega}{\pi}\int_0^{R \sin \beta_0} \frac{1}{\frac{y^2}{h^2 + R^2 \cos^2 \beta_0} + 1} \frac{dy}{h^2 + R^2 \cos^2 \beta_0} - \frac{h \sin \omega}{\pi} \int_0^{R \sin \beta_0} \frac{1}{\frac{y^2}{h^2 \sin^2 \beta_0} + 1} \frac{dy}{h^2} \notag \\ &= \frac{h \sin \omega}{\pi} \int_0^{\arctan \frac{R\sin \beta_0}{\sqrt{h^2 + R^2 \cos^2 \beta_0}}} \frac{du}{\sqrt{h^2 + R^2 \cos^2 \beta_0}} - \frac{h \sin \omega}{\pi} \int_0^{\arctan \frac{R}{h}} \frac{\sin \beta_0}{h} dv \notag \\ &= \frac{h \sin \omega}{\pi \sqrt{h^2 + R^2 \cos^2 \beta_0}} \arctan \frac{R\sin \beta_0}{\sqrt{h^2 + R^2 \cos^2 \beta_0}} - \frac{\sin \omega \sin \beta_0}{\pi} \arctan \frac{R}{h} \end{align}

Fourth term:

First, we perform integration in the YY direction.

0xtanβ01(y2+x2+h2)2dy=0xtanβ01(x2+h2)2(y2x2+h2+1)2dy=x2+h2(x2+h2)20xtanβ0x2+h21(u2+1)2du=x2+h2(x2+h2)20arctan(xtanβ0x2+h2)1(tan2t+1)21cos2tdt=x2+h2(x2+h2)20arctan(xtanβ0x2+h2)cos2tdt=x2+h22(x2+h2)20arctan(xtanβ0x2+h2)cos2t+1dt=x2+h22(x2+h2)2[12sin2t+t]0arctan(xtanβ0x2+h2)=x2+h22(x2+h2)2[tanttan2t+1+t]0arctan(xtanβ0x2+h2)=x2+h22(x2+h2)2{xtanβ0x2+h2x2tan2β0x2+h2+1+arctan(xtanβ0x2+h2)}=12(x2+h2)1xtanβ0x2(tan2β0+1)+h2+12(x2+h2)32arctanxtanβ0x2+h2\begin{align} &\int_0^{x \tan \beta_0} \frac{1}{(y^2 + x^2 + h^2)^2} dy \notag \\ &= \int_0^{x \tan \beta_0} \frac{\frac{1}{(x^2 + h^2)^2}}{(\frac{y^2}{x^2 + h^2} + 1)^2} dy = \frac{\sqrt{x^2 + h^2}}{(x^2 + h^2)^2} \int_0^{\frac{x \tan \beta_0}{\sqrt{x^2 + h^2}}} \frac{1}{(u^2 + 1)^2} du \notag \\ &= \frac{\sqrt{x^2 + h^2}}{(x^2 + h^2)^2} \int_0^{\arctan(\frac{x \tan \beta_0}{\sqrt{x^2 + h^2}})} \frac{1}{(\tan^2 t + 1)^2} \frac{1}{\cos^2 t}dt \notag \\ &= \frac{\sqrt{x^2 + h^2}}{(x^2 + h^2)^2} \int_0^{\arctan(\frac{x \tan \beta_0}{\sqrt{x^2 + h^2}})} \cos^2 t dt = \frac{\sqrt{x^2 + h^2}}{2(x^2 + h^2)^2} \int_0^{\arctan(\frac{x \tan \beta_0}{\sqrt{x^2 + h^2}})} \cos 2t + 1 dt \notag \\ &= \frac{\sqrt{x^2 + h^2}}{2(x^2 + h^2)^2} \left[ \frac{1}{2}\sin 2t + t\right]_0^{\arctan(\frac{x \tan \beta_0}{\sqrt{x^2 + h^2}})} = \frac{\sqrt{x^2 + h^2}}{2(x^2 + h^2)^2} \left[ \frac{\tan t}{\tan^2 t + 1} + t\right]_0^{\arctan(\frac{x \tan \beta_0}{\sqrt{x^2 + h^2}})} \notag \\ &= \frac{\sqrt{x^2 + h^2}}{2(x^2 + h^2)^2} \left\{ \frac{\frac{x \tan \beta_0}{\sqrt{x^2 + h^2}}}{\frac{x^2 \tan^2 \beta_0}{x^2 + h^2} + 1} + \arctan \left(\frac{x \tan \beta_0}{\sqrt{x^2 + h^2}}\right)\right\} \notag \\ &= \frac{1}{2} (x^2 + h^2)^{-1} \frac{x \tan \beta_0}{x^2 (\tan^2 \beta_0 + 1) + h^2} + \frac{1}{2} (x^2 + h^2)^{-\frac{3}{2}} \arctan \frac{x \tan \beta_0}{\sqrt{x^2 + h^2}} \end{align}

The parameter transformation has been performed as shown in Eqs. (11) and (12).

xtanβ0x2+h2=tanuh2tanβ0(x2+h2)32dx=ducos2u\begin{align} &\frac{x \tan \beta_0}{\sqrt{x^2 + h^2}} = \tan u \\ &h^2 \tan \beta_0 (x^2 + h^2)^{-\frac{3}{2}} dx = \frac{du}{\cos^2 u} \end{align}

Then, we integrate two terms in Eq. (10) in the XX direction.

Rcosβ0012(x2+h2)32arctanxtanβ0x2+h2dx=arctan(Rsinβ0R2cos2β0+h2)0udu2h2tanβ0cos2u=12h2tanβ0[utanu+log(cosu)]arctan(Rsinβ0R2cos2β0+h2)0=12h2tanβ0[Rsinβ0R2cos2β0+h2arctan(Rsinβ0R2cos2β0+h2)×log{cos(arctan(Rsinβ0R2cos2β0+h2))}]\begin{align} &\int^0_{R \cos \beta_0} \frac{1}{2} (x^2 + h^2)^{-\frac{3}{2}} \arctan \frac{x \tan \beta_0}{\sqrt{x^2 + h^2}} dx \notag\\ &= \int^0_{\arctan \left( \frac{R \sin \beta_0}{\sqrt{R^2 \cos^2 \beta_0 + h^2}} \right)} \frac{u du}{2 h^2 \tan \beta_0 \cos^2 u} \notag \\ &= \frac{1}{2h^2 \tan \beta_0}\left[ u \tan u + \log (\cos u) \right]^0_{\arctan \left( \frac{R \sin \beta_0}{\sqrt{R^2 \cos^2 \beta_0 + h^2}} \right)} \notag \\ &= -\frac{1}{2h^2 \tan \beta_0} \left[ \frac{R \sin \beta_0}{\sqrt{R^2 \cos^2 \beta_0 + h^2}} \arctan \left( \frac{R \sin \beta_0}{\sqrt{R^2 \cos^2 \beta_0 + h^2}} \right)\right. \notag \\ &\hspace{11pt}\times \left.\log \left\{ \cos \left( \arctan \left( \frac{R \sin \beta_0}{\sqrt{R^2 \cos^2 \beta_0 + h^2}} \right) \right) \right\} \right] \end{align} Rcosβ0012(x2+h2)1xtanβ0x2(tan2β0+1)+h2dx=Rcosβ0014h2tanβ0{2x(tan2β0+1)(tan2β0+1)x2+h22xx2+h2}dx=14h2tanβ0[log(1+x2tan2β0x2+h2)]Rcosβ00=14h2tanβ0log(1+R2sin2β0R2cos2β0+h2)\begin{align} &\int^0_{R \cos \beta_0} \frac{1}{2} (x^2 + h^2)^{-1} \frac{x \tan \beta_0}{x^2 (\tan^2 \beta_0 + 1) + h^2} dx \notag \\ &= \int^0_{R \cos \beta_0} \frac{1}{4 h^2 \tan \beta_0} \left\{ \frac{2x(\tan^2 \beta_0 + 1)}{(\tan^2 \beta_0 + 1) x^2 + h^2} - \frac{2x}{x^2 + h^2} \right\} dx \notag \\ &= \frac{1}{4 h^2 \tan \beta_0} \left[ \log \left( 1 + \frac{x^2 \tan^2 \beta_0}{x^2 + h^2} \right) \right]^0_{R \cos \beta_0} \notag \\ &= - \frac{1}{4 h^2 \tan \beta_0} \log \left( 1 + \frac{R^2 \sin^2 \beta_0}{R^2 \cos^2 \beta_0 + h^2} \right) \end{align}

Finally, the fourth term can be expressed as follows:

Rcosβ000xtanβ02h2cosωπ(x2+y2+h2)2dydx=cosωπtanβ0[Rsinβ0R2cos2β0+h2arctan(Rsinβ0R2cos2β0+h2)×log{cos(arctan(Rsinβ0R2cos2β0+h2))}]cosω2πtanβ0log(1+R2sin2β0R2cos2β0+h2)\begin{align} &\int^0_{R \cos \beta_0} \int_0^{x \tan \beta_0} \frac{2h^2 \cos \omega}{\pi (x^2 + y^2 + h^2)^2} dy dx \notag \\ &= -\frac{\cos \omega}{\pi \tan \beta_0} \left[ \frac{R \sin \beta_0}{\sqrt{R^2 \cos^2 \beta_0 + h^2}} \arctan \left( \frac{R \sin \beta_0}{\sqrt{R^2 \cos^2 \beta_0 + h^2}} \right)\right. \notag \\ &\hspace{70pt}\times \left.\log \left\{ \cos \left( \arctan \left( \frac{R \sin \beta_0}{\sqrt{R^2 \cos^2 \beta_0 + h^2}} \right) \right) \right\} \right] \notag \\ &\hspace{11pt}- \frac{\cos \omega}{2 \pi \tan \beta_0} \log \left( 1 + \frac{R^2 \sin^2 \beta_0}{R^2 \cos^2 \beta_0 + h^2} \right) \end{align}

In this case, we managed to complete the integration, thanks to the shape simplicity of the disk. However, performing the double integration is highly complex, and it would be very difficult to obtain a closed-form solution for more complicated geometries.

View Factor Evaluation based on the Line Integration

In some cases, the area integral can be transformed into a line integral using Stokes’ theorem. This is not always possible, but it can be applied to the calculation of the view factor. Stokes’ theorem is expressed as shown in Eq. (16) as vector form, and Eq. (17) as explicit parametric form.

Ω×Fds=ΩFdl\begin{equation} \iint_{\Omega} \nabla \times \boldsymbol{F} \cdot d\boldsymbol{s} = \int_{\partial \Omega} \boldsymbol{F} \cdot d \boldsymbol{l} \end{equation} Ω[l(RyQz)+m(PzRx)+n(QxPy)]ds=Ω(Pdxdt+Qdydt+Rdzdt)dt\begin{align} \iint_{\Omega} \left[ l \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) + m \left( \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) + n \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \right] ds \notag \\ = \int_{\partial \Omega} \left( P \frac{dx}{dt} + Q \frac{dy}{dt} + R \frac{dz}{dt} \right) dt \end{align}

The view factor in question is expressed as shown in Eq. (18).

F=AcosψcosλπS2dA=(xn1)×(xn2)πS4dA=(l2xfm2yfn2zf) dA,wheref=1πS4(l1x+m1y+n1z)\begin{align} F &= \int_A \frac{\cos \psi \cos \lambda}{\pi S^2} dA = \int \frac{(\boldsymbol{x} \cdot \boldsymbol{n}_1) \times (-\boldsymbol{x} \cdot \boldsymbol{n}_2)}{\pi S^4} dA \notag \\ &= \int (-l_2 x f - m_2 y f - n_2 z f)\ dA, \quad \mathrm{where}\quad f = \frac{1}{\pi S^4} (l_1 x + m_1 y + n_1 z) \end{align}

Comparing the expressions in Eqs. (17) and (18), the following relationships must hold for the application of Stokes’ theorem.

RyQz=xf,PzRx=yf,QxPy=zf\begin{align} \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} = - x f, \quad \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} = - y f, \quad \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = - z f \end{align}

While this choice of PP, QQ, and RR might appear arbitrary, it conveniently fulfills the conditions.

P=m1z+n1y2πS2,Q=n1x+l1z2πS2,R=l1y+m1x2πS2\begin{align*} P = \frac{-m_1 z + n_1 y}{2 \pi S^2}, \hspace{10pt} Q = \frac{-n_1 x + l_1 z}{2 \pi S^2}, \hspace{10pt} R = \frac{-l_1 y + m_1 x}{2 \pi S^2} \end{align*}

As an example, we can verify the first condition in Eq. (19) as shown in Eqs. (20)—(22).

Ry=y(l1y+m1x2πS2)=l12πS2(l1y+m1x)yπS4Qz=z(n1x+l1z2πS2)=l12πS2(n1x+l1z)zπS4\begin{align} \frac{\partial R}{\partial y} &= \frac{\partial}{\partial y} \left(\frac{-l_1 y + m_1 x}{2 \pi S^2} \right) = \frac{-l_1}{2 \pi S^2} - \frac{(-l_1y + m_1x)y}{\pi S^4} \\ \frac{\partial Q}{\partial z} &= \frac{\partial}{\partial z} \left(\frac{-n_1 x + l_1 z}{2 \pi S^2} \right) = \frac{l_1}{2 \pi S^2} - \frac{(-n_1x + l_1z)z}{\pi S^4} \end{align} RyQz=l1(x2+y2+z2)πS4+l1y2m1xyn1xz+l1z2πS4=x(l1x+m1y+n1z)πS4=xf\begin{align} \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} &= \frac{-l_1(x^2 + y^2 + z^2)}{\pi S^4} + \frac{l_1y^2 - m_1xy - n_1xz + l_1z^2}{\pi S^4} \notag \\ &= \frac{-x (l_1 x + m_1 y + n_1 z)}{\pi S^4} = -xf \end{align}

Since we have specified appropriate PP, QQ, and RR, we can express the view factor as a line integral.

F=12π(m1z+n1yS2dx+n1x+l1zS2dy+l1y+m1xS2dz)=l1zdyydz2πS2+m1xdzzdx2πS2+n1ydxxdy2πS2\begin{align} F &= \frac{1}{2 \pi} \int \left( \frac{-m_1 z + n_1 y}{S^2} dx + \frac{-n_1 x + l_1 z}{S^2} dy + \frac{-l_1 y + m_1 x}{S^2} dz \right) \notag \\ &= l_1 \int \frac{z dy - y dz}{2 \pi S^2} + m_1 \int \frac{x dz - z dx}{2 \pi S^2} + n_1 \int \frac{y dx - x dy}{2 \pi S^2} \end{align} [l1m1n1]=[sinω0cosω]:Infinitesimal surface direction[xyz]=[RcosαRsinαh]:Line on the disk edge[xyz]=[Rcosα0yh]:Line of the view edge\begin{align*} &\left[ \begin{array}{c}l_1 \\ m_1 \\ n_1\end{array} \right] =\left[ \begin{array}{c}\sin \omega \\ 0 \\ \cos \omega\end{array} \right] &&:\quad \text{Infinitesimal surface direction} \\ &\left[ \begin{array}{c}x \\ y \\ z\end{array} \right] =\left[ \begin{array}{c}R \cos \alpha \\ R \sin \alpha \\ h\end{array} \right] &&:\quad \text{Line on the disk edge} \\ &\left[ \begin{array}{c}x \\ y \\ z\end{array} \right] =\left[ \begin{array}{c}R \cos \alpha_0 \\ y \\ h\end{array} \right] &&:\quad \text{Line of the view edge} \end{align*}

disk-viewfactor-3 Figure 3: Disk View Factor Calculation by Line Integration.

Now, we are ready to perform the view factor calculation by the line integral. The vector (l2,m2,n2)(l_2, m_2, n_2) representing the orientation of the disk is directed downward, and we will integrate in a clockwise direction with respect to this vector.

F=l1zdyydz2πS2+n1ydxxdy2πS2=sinω(α0α0h(Rcosα)2π(R2+h2)dα+Rsinα0Rsinα0h2π(R2cos2α0+y2+h2)dy)+cosω(α0α0Rsinα(Rsinα)Rcosα(Rcosα)2π(R2+h2)dα+Rsinα0Rsinα0Rcosα02π(R2cos2α0+y2+h2)dy)=Rhsinω2π(R2+h2)α0α0cosαdα+hsinω2πarctan(Rsinα0R2cos2α0+h2)arctan(Rsinα0R2cos2α0+h2)dtR2cos2α0+h2R22π(R2+h2)α0α0dαRcosωcosα02πarctan(Rsinα0R2cos2α0+h2)arctan(Rsinα0R2cos2α0+h2)dtR2cos2α0+h2=Rhsinωsinα0π(R2+h2)+hsinωπR2cos2α0+h2arctan(Rsinα0R2cos2α0+h2)+R2α0cosωπ(R2+h2)Rcosωcosα0πR2cos2α0+h2arctan(Rsinα0R2cos2α0+h2)\begin{align} &F = l_1 \int \frac{z dy - y dz}{2 \pi S^2} + n_1 \int \frac{y dx - x dy}{2 \pi S^2} \notag \\ &= \sin \omega \left( \int_{\alpha_0}^{-\alpha_0} \frac{h (R \cos \alpha)}{2 \pi (R^2 + h^2)} d\alpha + \int_{-R \sin \alpha_0}^{R \sin \alpha_0} \frac{h}{2 \pi (R^2 \cos^2 \alpha_0 + y^2 + h^2)} dy \right) \notag \\ &\hspace{11pt}+ \cos \omega \left( \int_{\alpha_0}^{-\alpha_0} \frac{R \sin \alpha (-R \sin \alpha) - R \cos \alpha (R \cos \alpha)}{2 \pi (R^2 + h^2)} d\alpha + \int_{-R \sin \alpha_0}^{R \sin \alpha_0} \frac{- R \cos \alpha_0}{2 \pi (R^2 \cos^2 \alpha_0 + y^2 + h^2)} dy \right) \notag \\ &= \frac{Rh \sin \omega}{2 \pi (R^2 + h^2)} \int^{-\alpha_0}_{\alpha_0} \cos \alpha d\alpha + \frac{h \sin \omega}{2 \pi} \int_{\arctan(-\frac{R \sin \alpha_0}{\sqrt{R^2 \cos^2 \alpha_0 + h^2}})}^{\arctan(\frac{R \sin \alpha_0}{\sqrt{R^2 \cos^2 \alpha_0 + h^2}})} \frac{dt}{\sqrt{R^2 \cos^2 \alpha_0 + h^2}} \notag \\ &\hspace{11pt}- \frac{R^2}{2 \pi (R^2 + h^2)} \int_{\alpha_0}^{-\alpha_0} d\alpha - \frac{R \cos \omega \cos \alpha_0}{2 \pi} \int_{\arctan(-\frac{R \sin \alpha_0}{\sqrt{R^2 \cos^2 \alpha_0 + h^2}})}^{\arctan(\frac{R \sin \alpha_0}{\sqrt{R^2 \cos^2 \alpha_0 + h^2}})} \frac{dt}{\sqrt{R^2 \cos^2 \alpha_0 + h^2}} \notag \\ &= - \frac{Rh \sin \omega \sin \alpha_0}{\pi (R^2 + h^2)} + \frac{h \sin \omega}{\pi \sqrt{R^2 \cos^2 \alpha_0 + h^2}} \arctan \left( \frac{R \sin \alpha_0}{\sqrt{R^2 \cos^2 \alpha_0 + h^2}} \right) \notag \\ &\hspace{11pt}+ \frac{R^2 \alpha_0 \cos\omega}{\pi (R^2 + h^2)} - \frac{R \cos \omega \cos \alpha_0}{\pi \sqrt{R^2 \cos^2 \alpha_0 + h^2}} \arctan \left( \frac{R \sin \alpha_0}{\sqrt{R^2 \cos^2 \alpha_0 + h^2}} \right) \end{align}

With this approach, we have successfully derived the view factor expression for a disk from a plate element with reduced complexity.

Disk View Factor from a Plate Element with Offset

As another case of disk view factor from a plate element, let’s consider the scenario where the plate element is offset from the central axis of the disk. As shown in Figure 4, the orientation of the plate element is parallel to the disk.

disk-viewfactor-4 Figure 4: Plate Element to Disk in Parallel Plane. Element is Offset from the Disk Center.

Assuming the origin is at the plate element, the edge of the disk can be expressed as follows.

[xyz]=[RcosαaRsinαh],ddα[xyz]=[RsinαRcosα0]\begin{align} \left[ \begin{array}{c} x \\ y \\ z \end{array} \right] = \left[ \begin{array}{c} R \cos\alpha - a \\ R \sin\alpha \\ h \end{array} \right], \quad \frac{d}{d\alpha} \left[ \begin{array}{c} x \\ y \\ z \end{array} \right] = \left[ \begin{array}{c} -R \sin\alpha \\ R \cos\alpha \\ 0 \end{array} \right] \end{align}

The distance SS from a point on the edge of the disk to the infinitesimal surface is expressed as follows.

S2=(Rcosαa)2+(Rsinα)2+h2=R2+a2+h22aRcosα\begin{align} S^2 &= (R \cos \alpha - a)^2 + (R \sin \alpha)^2 + h^2 \notag \\ &= R^2 + a^2 + h^2 -2aR \cos\alpha \end{align}

As the orientation of the plate element is set to (0,0,1)(0,0,1), the view factor can be calculated as follows.

Foffset=ydxxdy2πS2=ππR2+aRcosα2π(R2+a2+h22aRcosα)dα=R22πππdαR2+a2+h22aRcosαaR2πππcosα dαR2+a2+h22aRcosα\begin{align} &F_\mathrm{offset} = \int \frac{ydx - xdy}{2\pi S^2} = \int_{\pi}^{-\pi} \frac{-R^2 + aR \cos\alpha}{2\pi (R^2 + a^2 + h^2 -2aR \cos\alpha)}d\alpha \notag \\ &= \frac{R^2}{2\pi} \int_{-\pi}^{\pi} \frac{d\alpha}{R^2 + a^2 + h^2 - 2aR \cos\alpha} - \frac{aR}{2\pi} \int_{-\pi}^{\pi} \frac{\cos\alpha ~d\alpha}{R^2 + a^2 + h^2 - 2aR \cos\alpha} \end{align}

The first term in (27) can be calculated as follows:

R22πππdαR2+a2+h22aRcosα=R22π1R2+a2+h22aR1t21+t221+t2dt=R2π1(R2+a2+h22aR)+(R2+a2+h2+2aR)t2dt=R2π(R2+a2+h2+2aR)1A2+t2dt=R2Aπ(R2+a2+h22aR)π2π2dθ=R2AR2+a2+h22aR=R2(R2+a2+h2)24a2R2\begin{align} &\frac{R^2}{2\pi} \int_{-\pi}^{\pi} \frac{d\alpha}{R^2 + a^2 + h^2 - 2aR \cos\alpha} \notag \\ &=\frac{R^2}{2\pi} \int_{-\infty}^{\infty} \frac{1}{R^2 + a^2 + h^2 - 2aR \frac{1-t^2}{1+t^2}} \frac{2}{1+t^2}dt \notag \\ % &= \frac{R^2}{\pi} \int_{-\infty}^{\infty} \frac{1}{(R^2 + a^2 + h^2)(1+t^2) - 2aR(1-t^2)}dt \notag \\ &= \frac{R^2}{\pi} \int_{-\infty}^{\infty} \frac{1}{(R^2 + a^2 + h^2 - 2aR) + (R^2 + a^2 + h^2 + 2aR)t^2}dt \notag \\ &= \frac{R^2}{\pi(R^2 + a^2 + h^2 + 2aR)} \int_{-\infty}^{\infty} \frac{1}{A^2 + t^2}dt \notag \\ &= \frac{R^2 A}{\pi(R^2 + a^2 + h^2 - 2aR)} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \notag = \frac{R^2A}{R^2 + a^2 + h^2 - 2aR} \notag \\ &= \frac{R^2}{\sqrt{(R^2 + a^2 + h^2)^2 - 4a^2R^2}} \end{align}

The parameter AA and the substitution used in the integration are presented as shown below.

t=Atanθ,dt=A dθcos2θ,A=R2+a2+h22aRR2+a2+h2+2aR\begin{align} t = A \tan\theta, \quad dt = \frac{A~d\theta}{\cos^2\theta}, \quad A = \sqrt{\frac{R^2 + a^2 + h^2 - 2aR}{R^2 + a^2 + h^2 + 2aR}} \end{align}

The second term in (27) can be calculated as follows:

aR2πππcosα dαR2+a2+h22aRcosα=aR2π1t21+t2R2+a2+h22aR1t21+t221+t2dt=aRπ1t2(R2+a2+h22aR)+(R2+a2+h2+2aR)t211+t2dt=aRπ(R2+a2+h2+2aR)1t2(A2+t2)(1+t2)dt=aRπ(R2+a2+h2+2aR)(1+A21A21t2+A221A21t2+1)dt=aRAR2+a2+h22aR1+A21A2aRR2+a2+h2+2aR21A2=12R2+a2+h2(R2+a2+h2)24a2R212\begin{align} &\frac{aR}{2\pi} \int_{-\pi}^{\pi} \frac{\cos\alpha ~d\alpha}{R^2 + a^2 + h^2 - 2aR \cos\alpha} \notag \\ &=\frac{aR}{2\pi} \int_{-\infty}^{\infty} \frac{\frac{1-t^2}{1+t^2}}{R^2 + a^2 + h^2 - 2aR \frac{1-t^2}{1+t^2}} \frac{2}{1+t^2}dt \notag \\ % &=\frac{aR}{\pi} \int_{-\infty}^{\infty} \frac{1-t^2}{(R^2 + a^2 + h^2)(1+t^2) - 2aR(1-t^2)} \frac{1}{1+t^2}dt \notag \\ &=\frac{aR}{\pi} \int_{-\infty}^{\infty} \frac{1-t^2}{(R^2 + a^2 + h^2 - 2aR) + (R^2 + a^2 + h^2 + 2aR)t^2} \frac{1}{1+t^2}dt \notag \\ &=\frac{aR}{\pi(R^2 + a^2 + h^2 + 2aR)} \int_{-\infty}^{\infty} \frac{1-t^2}{(A^2 + t^2)(1+t^2)}dt \notag \\ &=\frac{aR}{\pi(R^2 + a^2 + h^2 + 2aR)} \int_{-\infty}^{\infty} \left(\frac{1+A^2}{1-A^2} \frac{1}{t^2 + A^2} - \frac{2}{1-A^2} \frac{1}{t^2 + 1}\right) dt \notag \\ &=\frac{aRA}{R^2 + a^2 + h^2 - 2aR} \frac{1+A^2}{1-A^2} - \frac{aR}{R^2 + a^2 + h^2 + 2aR} \frac{2}{1-A^2} \notag \\ % &=\frac{aR}{\sqrt{(R^2 + a^2 + h^2)^2 - 4a^2R^2}} \frac{R^2+a^2+h^2}{2aR} - \frac{1}{2} \notag \\ &=\frac{1}{2}\frac{R^2 + a^2 + h^2}{\sqrt{(R^2 + a^2 + h^2)^2 - 4a^2R^2}} - \frac{1}{2} \end{align}

Finally, the disk view factor from a plate element with an offset is expresseed by the following equation.

Foffset=1212a2+h2R2(R2+a2+h2)24a2R2\begin{align} F_\mathrm{offset} &= \frac{1}{2} - \frac{1}{2}\frac{a^2 + h^2 - R^2}{\sqrt{(R^2 + a^2 + h^2)^2 - 4a^2R^2}} \end{align}

References

  1. John R. Howell, M. Pinar Mengüç, “Radiative transfer configuration factor catalog: A listing of relations for common geometries”, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 112, Issue 5, 2011, Pages 910-912, doi: 10.1016/j.jqsrt.2010.10.002
  2. A Catalog of Configuration Factors, 3rd Edition, https://www.thermalradiation.net/indexCat.html
  3. View Factor Calculator, https://sterad.net

Related Articles

Uniformly Distribute Points on Primitive Shapes

Mathematical methods for uniformly distributing points on primitive geometric surfaces including rectangles, triangles, cylinders, discs, spheres, cones, and parabolic surfaces for ray tracing applications.

Derivation of the Hertz-Knudsen-Schrage Equation

By adding an average velocity to the Maxwell-Boltzmann distribution, the Hertz-Knudsen Equation can be modified. This article derives the Hertz-Knudsen-Schrage Equation based on this assumption.