Nabla and Laplacian in Cylindrical and Spherical Coordinate Systems

Last updated:
Share: X LinkedIn

In the context of fluid dynamics, it is often useful to employ cylindrical and spherical coordinate systems. Thus, let’s derive the expressions for Nabla and Laplacian in these coordinate systems. There are several approaches to derive Nabla and Laplacian in different coordinate systems, but to avoid tedious calculations using the chain rule, we will use the general representation of Nabla in curvilinear coordinate systems.

Nabla in Curvilinear Coordinate Systems

First of all, the Nabla operator in a Cartesian Coordinate system is expressed as shown in Eq. (1). For clarity in notation, we denote the parameters of the Cartesian Coordinate system as x~i\tilde{x}_i.

=eix~i\begin{equation} \nabla = \boldsymbol{e}_i \frac{\partial}{\partial \tilde{x}_i} \end{equation}

This expression can be generalized as shown in Eq. (2) to be applicable in curvilinear coordinate systems.

=gixi\begin{equation} \nabla = \boldsymbol{g}^i \frac{\partial}{\partial x^i} \end{equation}

In Eq. (2), gi\boldsymbol{g}^i is a contravariant basis vector, which is related to a covariant basis vector gi\boldsymbol{g}_i as defined in Eq. (3). A covariant basis vector is a partial derivative of the position vector r\boldsymbol{r} with respect to a parameter of a curvilinear coordinate system. This vector indicates the direction of the position vector’s change when the parameter slightly changes.

gi=rxi\begin{equation} \boldsymbol{g}_i = \frac{\partial \boldsymbol{r}}{\partial x^i} \end{equation}

A contravariant basis vector is defined to satisfy the following relationship.

gigj=δij\begin{equation} \boldsymbol{g}_i \cdot \boldsymbol{g}^j = \delta_i^j \end{equation}

We can confirm that the expression in Eq. (2) is a generalization of Eq. (1) by transforming the basis vectors. When transforming from one set of covariant basis vectors to another, the following relationship holds.

gi=rxi=xˉjxirxˉj=xˉjxigˉj\begin{equation} \boldsymbol{g}_i = \frac{\partial \boldsymbol{r}}{\partial x^i} = \frac{\partial \bar{x}^j}{\partial x^i} \frac{\partial \boldsymbol{r}}{\partial \bar{x}^j} = \frac{\partial \bar{x}^j}{\partial x^i} \bar{\boldsymbol{g}}_j \end{equation}

Based on this relationship, we can also derive the transformation formula for contravariant basis vectors.

gi=xixˉjgˉj\begin{equation} \boldsymbol{g}^i = \frac{\partial x^i}{\partial \bar{x}^j} \bar{\boldsymbol{g}}^j \end{equation}

Using this relationship, we can transform the Nabla operator in curvilinear coordinate systems to the basis of the Cartesian Coordinate system. The resulting expression matches the well-known representation in Eq. (1).

=gixi=ejxix~jxi=ejx~j\begin{equation} \nabla = \boldsymbol{g}^i \frac{\partial}{\partial x^i} = \boldsymbol{e}_j \frac{\partial x^i}{\partial \tilde{x}_j} \frac{\partial}{\partial x^i} = \boldsymbol{e}_j \frac{\partial}{\partial \tilde{x}_j} \end{equation}

Cylindrical Coordinate System

The position vector in Cartesian coordinates can be described using the parameters of cylindrical coordinates as follows.

r=xex+yey+zez=rcosθ ex+rsinθ ey+zez\begin{equation} \boldsymbol{r} = x \boldsymbol{e}_x + y \boldsymbol{e}_y + z \boldsymbol{e}_z = r \cos \theta\ \boldsymbol{e}_x + r \sin \theta\ \boldsymbol{e}_y + z \boldsymbol{e}_z \end{equation}

From this expression, we can derive the covariant basis vectors as shown in Eqs. (9)—(11). Covariant basis vectors are generally not orthogonal, but in the cylindrical coordinate system, the obtained three vectors are orthogonal to each other.

gr=rr=cosθex+sinθeygθ=rθ=rsinθex+rcosθeygz=rz=ez\begin{align} &\boldsymbol{g}_r = \frac{\partial \boldsymbol{r}}{\partial r} = \cos \theta \boldsymbol{e}_x + \sin \theta \boldsymbol{e}_y \\ &\boldsymbol{g}_\theta = \frac{\partial \boldsymbol{r}}{\partial \theta} = - r \sin \theta \boldsymbol{e}_x + r \cos \theta \boldsymbol{e}_y \\ &\boldsymbol{g}_z = \frac{\partial \boldsymbol{r}}{\partial z} = \boldsymbol{e}_z \end{align}

Since the obtained covariant basis vectors are orthogonal to each other, the contravariant basis vectors (gr,gθ,gz)(\boldsymbol{g}^r, \boldsymbol{g}^\theta, \boldsymbol{g}^z) are in the same directions as their respective covariant basis vectors, but with lengths that are the reciprocals. We obtain the Nabla operator in the cylindrical coordinate system as shown in Eq. (12), where we denote the normalized covariant basis vectors as (er,eθ,ez)(\boldsymbol{e}_r, \boldsymbol{e}_\theta, \boldsymbol{e}_z).

=grr+gθθ+gzz=err+eθ1rθ+ezz\begin{equation} \nabla = \boldsymbol{g}^r \frac{\partial}{\partial r} + \boldsymbol{g}^\theta \frac{\partial}{\partial \theta} + \boldsymbol{g}^z \frac{\partial}{\partial z} = \boldsymbol{e}_r \frac{\partial}{\partial r} + \boldsymbol{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \boldsymbol{e}_z \frac{\partial}{\partial z} \end{equation}

Laplacian in the cylindrical coordinate system can be derived by calculating the inner product of Nabla.

θ[ereθ]=[sinθcosθcosθsinθ][exey]=[eθer]\begin{equation} \frac{\partial}{\partial \theta} \left[ \begin{array}{c} \boldsymbol{e}_r \\ \boldsymbol{e}_\theta \end{array} \right] = \left[ \begin{array}{cc} -\sin \theta & \cos \theta \\ - \cos \theta & - \sin \theta \end{array} \right] \left[ \begin{array}{c} \boldsymbol{e}_x \\ \boldsymbol{e}_y \end{array} \right] = \left[ \begin{array}{c} \boldsymbol{e}_\theta \\ - \boldsymbol{e}_r \end{array} \right] \end{equation} Δ==(err+eθ1rθ+ezz)(err+eθ1rθ+ezz)=2r2+eθ1r(θer)r+1r22θ2+2z2=2r2+1rr+1r22θ2+2z2\begin{align} \Delta &= \nabla \cdot \nabla \notag \\ &= \left( \boldsymbol{e}_r \frac{\partial}{\partial r} + \boldsymbol{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \boldsymbol{e}_z \frac{\partial}{\partial z} \right) \cdot \left( \boldsymbol{e}_r \frac{\partial}{\partial r} + \boldsymbol{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \boldsymbol{e}_z \frac{\partial}{\partial z} \right) \notag \\ &= \frac{\partial^2}{\partial r^2} + \boldsymbol{e}_\theta \cdot \frac{1}{r} \left( \frac{\partial}{\partial \theta} \boldsymbol{e}_r \right) \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2} \notag \\ &= \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2} \\ \end{align}

Spherical Coordinate System

The position vector in Cartesian coordinates can be described using the parameters of spherical coordinates as follows.

r=xex+yey+zez=rsinθcosϕ ex+rsinθsinϕ ey+rcosθez\begin{equation} \boldsymbol{r} = x \boldsymbol{e}_x + y \boldsymbol{e}_y + z \boldsymbol{e}_z = r \sin \theta \cos \phi\ \boldsymbol{e}_x + r \sin \theta \sin \phi\ \boldsymbol{e}_y + r \cos \theta \boldsymbol{e}_z \end{equation}

Based on this expression, we can derive the covariant basis vectors as shown below.

gr=rr=sinθcosϕ ex+sinθsinϕ ey+cosθ ezgθ=rθ=rcosθcosϕ ex+rcosθsinϕ eyrsinθ ezgϕ=rϕ=rsinθsinϕ ex+rsinθcosϕ ey\begin{align} &\boldsymbol{g}_r = \frac{\partial \boldsymbol{r}}{\partial r} = \sin \theta \cos \phi\ \boldsymbol{e}_x + \sin \theta \sin \phi\ \boldsymbol{e}_y + \cos \theta\ \boldsymbol{e}_z \\ &\boldsymbol{g}_\theta = \frac{\partial \boldsymbol{r}}{\partial \theta} = r \cos \theta \cos \phi\ \boldsymbol{e}_x + r \cos \theta \sin \phi\ \boldsymbol{e}_y - r \sin \theta\ \boldsymbol{e}_z \\ &\boldsymbol{g}_\phi = \frac{\partial \boldsymbol{r}}{\partial \phi} = - r \sin \theta \sin \phi\ \boldsymbol{e}_x + r \sin \theta \cos \phi\ \boldsymbol{e}_y \end{align}

Same as the cylindrical coordinate system, the obtained covariant basis vectors are orthogonal to each other. Thus, the corresponding contravariant basis vectors (gr,gθ,gϕ)(\boldsymbol{g}^r, \boldsymbol{g}^\theta, \boldsymbol{g}^\phi) are in the same directions as the covariant basis vectors, but with lengths that are the reciprocals. Denoting the normalized covariant basis vectors as (er,eθ,eϕ)(\boldsymbol{e}_r, \boldsymbol{e}_{\theta}, \boldsymbol{e}_{\phi}), we obtain the Nabla operator in the spherical coordinate system as shown in Eq. (19).

=grr+gθθ+gϕϕ=err+eθ1rθ+eϕ1rsinθϕ\begin{equation} \nabla = \boldsymbol{g}^r \frac{\partial}{\partial r} + \boldsymbol{g}^\theta \frac{\partial}{\partial \theta} + \boldsymbol{g}^\phi \frac{\partial}{\partial \phi} = \boldsymbol{e}_r \frac{\partial}{\partial r} + \boldsymbol{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \boldsymbol{e}_\phi \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \end{equation}

Laplacian in the spherical coordinate system can be derived by calculating the inner product of Nabla.

θ[ereθeϕ]=[cosθcosϕcosθsinϕsinθsinθcosϕsinθsinϕcosθ000][exeyez]=[eθer0]\begin{align} \frac{\partial}{\partial \theta} \left[ \begin{array}{c} \boldsymbol{e}_r \\ \boldsymbol{e}_\theta \\ \boldsymbol{e}_\phi \end{array} \right] = \left[ \begin{array}{ccc} \cos \theta \cos \phi & \cos \theta \sin \phi & - \sin \theta \\ - \sin \theta \cos \phi & - \sin \theta \sin \phi & - \cos \theta \\ 0 & 0 & 0 \end{array} \right] \left[ \begin{array}{c} \boldsymbol{e}_x \\ \boldsymbol{e}_y \\ \boldsymbol{e}_z \end{array} \right] = \left[ \begin{array}{c} \boldsymbol{e}_\theta \\ - \boldsymbol{e}_r \\ 0 \end{array} \right] \end{align} ϕ[ereθeϕ]=[sinθsinϕsinθcosϕ0cosθsinϕcosθcosϕ0cosϕsinϕ0][exeyez]=[sinθ eϕcosθ eϕsinθ ercosθ eθ]\begin{align} \frac{\partial}{\partial \phi} \left[ \begin{array}{c} \boldsymbol{e}_r \\ \boldsymbol{e}_\theta \\ \boldsymbol{e}_\phi \end{array} \right] &= \left[ \begin{array}{ccc} - \sin \theta \sin \phi & \sin \theta \cos \phi & 0 \\ - \cos \theta \sin \phi & \cos \theta \cos \phi & 0 \\ - \cos \phi & - \sin \phi & 0 \end{array} \right] \left[ \begin{array}{c} \boldsymbol{e}_x \\ \boldsymbol{e}_y \\ \boldsymbol{e}_z \end{array} \right] \notag \\ &= \left[ \begin{array}{c} \sin \theta\ \boldsymbol{e}_\phi \\ \cos \theta\ \boldsymbol{e}_\phi \\ - \sin \theta\ \boldsymbol{e}_r - \cos \theta\ \boldsymbol{e}_\theta \end{array} \right] \end{align} Δ==(err+eθ1rθ+eϕ1rsinθϕ)(err+eθ1rθ+eϕ1rsinθϕ)=2r2+2rr+1r22θ2+1r2tanθθ+1r2sin2θ2ϕ2\begin{align} \Delta &= \nabla \cdot \nabla \notag \\ &= \left( \boldsymbol{e}_r \frac{\partial}{\partial r} + \boldsymbol{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \boldsymbol{e}_\phi \frac{1}{r \sin \theta}\frac{\partial}{\partial \phi} \right) \cdot \left( \boldsymbol{e}_r \frac{\partial}{\partial r} + \boldsymbol{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \boldsymbol{e}_\phi \frac{1}{r \sin \theta}\frac{\partial}{\partial \phi} \right) \notag \\ &= \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{1}{r^2 \tan \theta} \frac{\partial}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \end{align}

Related Articles

Knudsen Number and Mean Free Path

When the interested fluid phenomenon reaches very low density region, we have to be careful whether it is still within the scope of ordinary fluid dynamics. One of the useful indicators to characterize such physical phenomena is a dimensionless quantity called Knudsen number.